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Protein Structure Prediction
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Given the amino acid sequence of a 
protein (1D), is it possible to predict it’s 
native structure (3D)?
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Protein Structure Prediction
• Given:

– Protein model
• Properties of constituent particles 
• Potential energy function (force field)

• Goal:
– Predict native (lowest energy) conformation

• Thermodynamic hypothesis [Anfinsen, 1973]

– Develop hybrid method, combining:
• Energy minimization [numerical optimization]

• Comparative modeling [bioinformatics]

– Use template (known structure) to predict target structure
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• Backbone model
– Single chain of particles with residue attributes

– Particles model Ca atoms in proteins

• Properties of particles
– Hydrophobic, Hydrophilic, Neutral 
– Diverse hydrophobic-hydrophobic interactions

Protein Model: Particle Properties

[Veitshans, Klimov, and Thirumalai. Protein Folding Kinetics, 1996.]
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Potential Energy Function
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Potential Energy Function
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• Goal
– Minimize energy function of targetprotein:

• Steps to solution
– Energy of templateprotein:
– Define a homotopyfunction:

•
• Deforms template protein into target protein

– Produce sequence of minimizers of               
starting at            and ending at 

Homotopy Optimization 
Method (HOM)
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Energy Landscape Deformation
Dihedral Terms
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Illustration of HOM
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Homotopy Optimization using 
Perturbations & Ensembles (HOPE)

• Improvements over HOM
– Produces ensemble of sequences of 

localminimizers of              by perturbing 
intermediate results

– Increases likelihood of predicting 
globalminimizer

• Algorithmic considerations
– Maximum ensemble size
– Determining ensemble members
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Illustration of HOPE
Maximum ensemble size = 2
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Numerical Experiments
9 chains (22 particles) with known structure
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Numerical Experiments
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Numerical Experiments
• 62 template-target pairs

– 10 pairs had identical native structures

• Methods
– HOM vs. Newton’s method w/trust region (N-TR)
– HOPE vs. simulated annealing (SA)

• Different ensemble sizes (2,4,8,16)
• Averaged over 10 runs
• Perturbations where sequences differ

• Measuring success
– Structural overlap function:

• Percentage of interparticle distances off by more  
than 20% of the average bond length (  )

– Root mean-squared deviation (RMSD)

Ensemble SA
Basin hopping
T0 = 105

Cycles = 10
Berkeley schedule
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Structural Overlap Function

NativePredicted
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RMSD

Measures the distance between corresponding particles 
in the predicted and lowest energy conformations when 
they are optimally superimposed.

where           is a rotation and translation of
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Results

Method
Ensemble 

Size cccc  = 0 Success Mean cccc
Mean 
RMSD

Time 
(sec)

HOPE 2 33.40 0.54 0.14 0.17 35
4 43.10 0.70 0.08 0.11 65
8 54.60 0.88 0.03 0.04 115

16 59.00 0.95 0.01 0.02 200
SA 2 13.10 0.21 0.27 0.36 52

4 20.80 0.34 0.19 0.26 107
8 28.50 0.46 0.13 0.19 229

16 40.20 0.65 0.08 0.12 434

Method cccc  = 0 Success Mean cccc
Mean 
RMSD

Time 
(sec)

HOM 15 0.24 0.36 0.38 10
N-TR 4 0.06 0.45 0.55 1
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Results
Success of HOPE and SA with ensembles of size 16 for 
each template-target pair. The size of each circle represents 
the percentage of successful predictions over the 10 runs.
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Conclusions
• Homotopy optimization methods

– More successful than standard minimizers

• HOPE
– For problems with                          readily available

– Solves protein structure prediction problem
– Outperforms ensemble-based simulated annealing

• Future work
– Protein Data Bank (templates), TINKER (energy)
– Convergence analysis for HOPE
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